Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 8 Apr 2022]
Title:Auditory-Based Data Augmentation for End-to-End Automatic Speech Recognition
View PDFAbstract:End-to-end models have achieved significant improvement on automatic speech recognition. One common method to improve performance of these models is expanding the data-space through data augmentation. Meanwhile, human auditory inspired front-ends have also demonstrated improvement for automatic speech recognisers. In this work, a well-verified auditory-based model, which can simulate various hearing abilities, is investigated for the purpose of data augmentation for end-to-end speech recognition. By introducing the auditory model into the data augmentation process, end-to-end systems are encouraged to ignore variation from the signal that cannot be heard and thereby focus on robust features for speech recognition. Two mechanisms in the auditory model, spectral smearing and loudness recruitment, are studied on the LibriSpeech dataset with a transformer-based end-to-end model. The results show that the proposed augmentation methods can bring statistically significant improvement on the performance of the state-of-the-art SpecAugment.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.