Computer Science > Computation and Language
[Submitted on 10 Apr 2022 (v1), last revised 23 Sep 2022 (this version, v2)]
Title:Reducing Model Jitter: Stable Re-training of Semantic Parsers in Production Environments
View PDFAbstract:Retraining modern deep learning systems can lead to variations in model performance even when trained using the same data and hyper-parameters by simply using different random seeds. We call this phenomenon model jitter. This issue is often exacerbated in production settings, where models are retrained on noisy data. In this work we tackle the problem of stable retraining with a focus on conversational semantic parsers. We first quantify the model jitter problem by introducing the model agreement metric and showing the variation with dataset noise and model sizes. We then demonstrate the effectiveness of various jitter reduction techniques such as ensembling and distillation. Lastly, we discuss practical trade-offs between such techniques and show that co-distillation provides a sweet spot in terms of jitter reduction for semantic parsing systems with only a modest increase in resource usage.
Submission history
From: Christopher Hidey [view email][v1] Sun, 10 Apr 2022 17:57:55 UTC (468 KB)
[v2] Fri, 23 Sep 2022 17:52:13 UTC (625 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.