Mathematics > Numerical Analysis
[Submitted on 10 Apr 2022 (v1), last revised 9 Nov 2022 (this version, v2)]
Title:How much can one learn a partial differential equation from its solution?
View PDFAbstract:In this work we study the problem about learning a partial differential equation (PDE) from its solution data. PDEs of various types are used as examples to illustrate how much the solution data can reveal the PDE operator depending on the underlying operator and initial data. A data driven and data adaptive approach based on local regression and global consistency is proposed for stable PDE identification. Numerical experiments are provided to verify our analysis and demonstrate the performance of the proposed algorithms.
Submission history
From: Yimin Zhong [view email][v1] Sun, 10 Apr 2022 04:58:32 UTC (19,972 KB)
[v2] Wed, 9 Nov 2022 06:03:41 UTC (19,953 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.