Computer Science > Machine Learning
[Submitted on 7 Apr 2022 (v1), last revised 12 Jan 2023 (this version, v3)]
Title:Automated Sleep Staging via Parallel Frequency-Cut Attention
View PDFAbstract:This paper proposes a novel framework for automatically capturing the time-frequency nature of electroencephalogram (EEG) signals of human sleep based on the authoritative sleep medicine guidance. The framework consists of two parts: the first part extracts informative features by partitioning the input EEG spectrograms into a sequence of time-frequency patches. The second part is constituted by an attention-based architecture to efficiently search for the correlation between partitioned time-frequency patches and defining factors of sleep stages in parallel. The proposed pipeline is validated on the Sleep Heart Health Study dataset with new state-of-the-art results for the stages wake, N2, and N3, obtaining respective F1 scores of 0.93, 0.88, and 0.87, with only EEG signals used. The proposed method also has a high inter-rater reliability of 0.80 kappa. We also visualize the correspondence between sleep staging decisions and features extracted by the proposed method, providing strong interpretability for our model.
Submission history
From: Zheng Chen [view email][v1] Thu, 7 Apr 2022 02:48:13 UTC (4,603 KB)
[v2] Sun, 26 Jun 2022 08:33:34 UTC (24,534 KB)
[v3] Thu, 12 Jan 2023 07:46:13 UTC (36,435 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.