Computer Science > Machine Learning
[Submitted on 7 Apr 2022]
Title:Adaptive-Gravity: A Defense Against Adversarial Samples
View PDFAbstract:This paper presents a novel model training solution, denoted as Adaptive-Gravity, for enhancing the robustness of deep neural network classifiers against adversarial examples. We conceptualize the model parameters/features associated with each class as a mass characterized by its centroid location and the spread (standard deviation of the distance) of features around the centroid. We use the centroid associated with each cluster to derive an anti-gravity force that pushes the centroids of different classes away from one another during network training. Then we customized an objective function that aims to concentrate each class's features toward their corresponding new centroid, which has been obtained by anti-gravity force. This methodology results in a larger separation between different masses and reduces the spread of features around each centroid. As a result, the samples are pushed away from the space that adversarial examples could be mapped to, effectively increasing the degree of perturbation needed for making an adversarial example. We have implemented this training solution as an iterative method consisting of four steps at each iteration: 1) centroid extraction, 2) anti-gravity force calculation, 3) centroid relocation, and 4) gravity training. Gravity's efficiency is evaluated by measuring the corresponding fooling rates against various attack models, including FGSM, MIM, BIM, and PGD using LeNet and ResNet110 networks, benchmarked against MNIST and CIFAR10 classification problems. Test results show that Gravity not only functions as a powerful instrument to robustify a model against state-of-the-art adversarial attacks but also effectively improves the model training accuracy.
Submission history
From: Banafsheh Saber Latibari [view email][v1] Thu, 7 Apr 2022 18:55:27 UTC (18,703 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.