Computer Science > Neural and Evolutionary Computing
[Submitted on 2 Apr 2022 (v1), last revised 22 May 2023 (this version, v3)]
Title:Towards Robust and Accurate Myoelectric Controller Design based on Multi-objective Optimization using Evolutionary Computation
View PDFAbstract:Myoelectric pattern recognition is one of the important aspects in the design of the control strategy for various applications including upper-limb prostheses and bio-robotic hand movement systems. The current work has proposed an approach to design an energy-efficient EMG-based controller by considering a kernelized SVM classifier for decoding the information of surface electromyography (sEMG) signals to infer the underlying muscle movements. In order to achieve the optimized performance of the EMG-based controller, our main strategy of classifier design is to reduce the false movements of the overall system (when the EMG-based controller is at the `Rest' position). To this end, we have formulated the training algorithm of the proposed supervised learning system as a general constrained multi-objective optimization problem. An elitist multi-objective evolutionary algorithm $-$ the non-dominated sorting genetic algorithm II (NSGA-II) has been used to tune the hyperparameters of SVM. We have presented the experimental results by performing the experiments on a dataset consisting of the sEMG signals collected from eleven subjects at five different upper limb positions. Furthermore, the performance of the trained models based on the two-objective metrics, namely classification accuracy, and false-negative have been evaluated on two different test sets to examine the generalization capability of the proposed training approach while implementing limb-position invariant EMG classification. It is evident from the presented result that the proposed approach provides much more flexibility to the designer in selecting the parameters of the classifier to optimize the energy efficiency of the EMG-based controller.
Submission history
From: Suman Samui [view email][v1] Sat, 2 Apr 2022 06:13:01 UTC (830 KB)
[v2] Thu, 18 May 2023 06:56:04 UTC (1 KB) (withdrawn)
[v3] Mon, 22 May 2023 14:07:53 UTC (922 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.