Computer Science > Cryptography and Security
[Submitted on 6 Apr 2022 (v1), last revised 1 Dec 2022 (this version, v2)]
Title:Adversarial Analysis of the Differentially-Private Federated Learning in Cyber-Physical Critical Infrastructures
View PDFAbstract:Federated Learning (FL) has become increasingly popular to perform data-driven analysis in cyber-physical critical infrastructures. Since the FL process may involve the client's confidential information, Differential Privacy (DP) has been proposed lately to secure it from adversarial inference. However, we find that while DP greatly alleviates the privacy concerns, the additional DP-noise opens a new threat for model poisoning in FL. Nonetheless, very little effort has been made in the literature to investigate this adversarial exploitation of the DP-noise. To overcome this gap, in this paper, we present a novel adaptive model poisoning technique {\alpha}-MPELM} through which an attacker can exploit the additional DP-noise to evade the state-of-the-art anomaly detection techniques and prevent optimal convergence of the FL model. We evaluate our proposed attack on the state-of-the-art anomaly detection approaches in terms of detection accuracy and validation loss. The main significance of our proposed {\alpha}-MPELM attack is that it reduces the state-of-the-art anomaly detection accuracy by 6.8% for norm detection, 12.6% for accuracy detection, and 13.8% for mix detection. Furthermore, we propose a Reinforcement Learning-based DP level selection process to defend {\alpha}-MPELM attack. The experimental results confirm that our defense mechanism converges to an optimal privacy policy without human maneuver.
Submission history
From: Md Tamjid Hossain [view email][v1] Wed, 6 Apr 2022 08:13:20 UTC (17,262 KB)
[v2] Thu, 1 Dec 2022 19:37:08 UTC (23,719 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.