Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Apr 2022]
Title:Distortion-Aware Self-Supervised 360° Depth Estimation from A Single Equirectangular Projection Image
View PDFAbstract:360° images are widely available over the last few years. This paper proposes a new technique for single 360° image depth prediction under open environments. Depth prediction from a 360° single image is not easy for two reasons. One is the limitation of supervision datasets - the currently available dataset is limited to indoor scenes. The other is the problems caused by Equirectangular Projection Format (ERP), commonly used for 360° images, that are coordinate and distortion. There is only one method existing that uses cube map projection to produce six perspective images and apply self-supervised learning using motion pictures for perspective depth prediction to deal with these problems. Different from the existing method, we directly use the ERP format. We propose a framework of direct use of ERP with coordinate conversion of correspondences and distortion-aware upsampling module to deal with the ERP related problems and extend a self-supervised learning method for open environments. For the experiments, we firstly built a dataset for the evaluation, and quantitatively evaluate the depth prediction in outdoor scenes. We show that it outperforms the state-of-the-art technique
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.