Computer Science > Data Structures and Algorithms
[Submitted on 1 Apr 2022]
Title:Twin-width VIII: delineation and win-wins
View PDFAbstract:We introduce the notion of delineation. A graph class $\mathcal C$ is said delineated if for every hereditary closure $\mathcal D$ of a subclass of $\mathcal C$, it holds that $\mathcal D$ has bounded twin-width if and only if $\mathcal D$ is monadically dependent. An effective strengthening of delineation for a class $\mathcal C$ implies that tractable FO model checking on $\mathcal C$ is perfectly understood: On hereditary closures $\mathcal D$ of subclasses of $\mathcal C$, FO model checking is fixed-parameter tractable (FPT) exactly when $\mathcal D$ has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we show that segment graphs, directed path graphs, and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that $K_{t,t}$-free segment graphs, and axis-parallel $H_t$-free unit segment graphs have bounded twin-width, where $H_t$ is the half-graph or ladder of height $t$. In contrast, axis-parallel $H_4$-free two-lengthed segment graphs have unbounded twin-width. Our new results, combined with the known FPT algorithm for FO model checking on graphs given with $O(1)$-sequences, lead to win-win arguments. For instance, we derive FPT algorithms for $k$-Ladder on visibility graphs of 1.5D terrains, and $k$-Independent Set on visibility graphs of simple polygons.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.