Computer Science > Computational Complexity
[Submitted on 31 Mar 2022]
Title:The Legend of Zelda: The Complexity of Mechanics
View PDFAbstract:We analyze some of the many game mechanics available to Link in the classic Legend of Zelda series of video games. In each case, we prove that the generalized game with that mechanic is polynomial, NP-complete, NP-hard and in PSPACE, or PSPACE-complete. In the process we give an overview of many of the hardness proof techniques developed for video games over the past decade: the motion-planning-through-gadgets framework, the planar doors framework, the doors-and-buttons framework, the "Nintendo" platform game / SAT framework, and the collectible tokens and toll roads / Hamiltonicity framework.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.