Computer Science > Information Retrieval
[Submitted on 27 Mar 2022]
Title:Leveraging Search History for Improving Person-Job Fit
View PDFAbstract:As the core technique of online recruitment platforms, person-job fit can improve hiring efficiency by accurately matching job positions with qualified candidates. However, existing studies mainly focus on the recommendation scenario, while neglecting another important channel for linking positions with job seekers, i.e. search. Intuitively, search history contains rich user behavior in job seeking, reflecting important evidence for job intention of users. In this paper, we present a novel Search History enhanced Person-Job Fit model, named as SHPJF. To utilize both text content from jobs/resumes and search histories from users, we propose two components with different purposes. For text matching component, we design a BERT-based text encoder for capturing the semantic interaction between resumes and job descriptions. For intention modeling component, we design two kinds of intention modeling approaches based on the Transformer architecture, either based on the click sequence or query text sequence. To capture underlying job intentions, we further propose an intention clustering technique to identify and summarize the major intentions from search logs. Extensive experiments on a large real-world recruitment dataset have demonstrated the effectiveness of our approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.