Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Mar 2022 (v1), last revised 1 Apr 2022 (this version, v3)]
Title:Feature Selective Transformer for Semantic Image Segmentation
View PDFAbstract:Recently, it has attracted more and more attentions to fuse multi-scale features for semantic image segmentation. Various works were proposed to employ progressive local or global fusion, but the feature fusions are not rich enough for modeling multi-scale context features. In this work, we focus on fusing multi-scale features from Transformer-based backbones for semantic segmentation, and propose a Feature Selective Transformer (FeSeFormer), which aggregates features from all scales (or levels) for each query feature. Specifically, we first propose a Scale-level Feature Selection (SFS) module, which can choose an informative subset from the whole multi-scale feature set for each scale, where those features that are important for the current scale (or level) are selected and the redundant are discarded. Furthermore, we propose a Full-scale Feature Fusion (FFF) module, which can adaptively fuse features of all scales for queries. Based on the proposed SFS and FFF modules, we develop a Feature Selective Transformer (FeSeFormer), and evaluate our FeSeFormer on four challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K, and Cityscapes, outperforming the state-of-the-art.
Submission history
From: Fangjian Lin [view email][v1] Sat, 26 Mar 2022 17:58:18 UTC (11,786 KB)
[v2] Tue, 29 Mar 2022 07:57:01 UTC (11,782 KB)
[v3] Fri, 1 Apr 2022 07:55:05 UTC (11,783 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.