Computer Science > Machine Learning
[Submitted on 26 Mar 2022 (v1), last revised 17 Jul 2022 (this version, v2)]
Title:Contrastive Graph Learning for Population-based fMRI Classification
View PDFAbstract:Contrastive self-supervised learning has recently benefited fMRI classification with inductive biases. Its weak label reliance prevents overfitting on small medical datasets and tackles the high intraclass variances. Nonetheless, existing contrastive methods generate resemblant pairs only on pixel-level features of 3D medical images, while the functional connectivity that reveals critical cognitive information is under-explored. Additionally, existing methods predict labels on individual contrastive representation without recognizing neighbouring information in the patient group, whereas interpatient contrast can act as a similarity measure suitable for population-based classification. We hereby proposed contrastive functional connectivity graph learning for population-based fMRI classification. Representations on the functional connectivity graphs are "repelled" for heterogeneous patient pairs meanwhile homogeneous pairs "attract" each other. Then a dynamic population graph that strengthens the connections between similar patients is updated for classification. Experiments on a multi-site dataset ADHD200 validate the superiority of the proposed method on various metrics. We initially visualize the population relationships and exploit potential subtypes.
Submission history
From: Xuesong Wang [view email][v1] Sat, 26 Mar 2022 10:56:40 UTC (5,967 KB)
[v2] Sun, 17 Jul 2022 11:03:13 UTC (5,966 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.