Computer Science > Sound
[Submitted on 28 Mar 2022]
Title:Analyzing Language-Independent Speaker Anonymization Framework under Unseen Conditions
View PDFAbstract:In our previous work, we proposed a language-independent speaker anonymization system based on self-supervised learning models. Although the system can anonymize speech data of any language, the anonymization was imperfect, and the speech content of the anonymized speech was distorted. This limitation is more severe when the input speech is from a domain unseen in the training data. This study analyzed the bottleneck of the anonymization system under unseen conditions. It was found that the domain (e.g., language and channel) mismatch between the training and test data affected the neural waveform vocoder and anonymized speaker vectors, which limited the performance of the whole system. Increasing the training data diversity for the vocoder was found to be helpful to reduce its implicit language and channel dependency. Furthermore, a simple correlation-alignment-based domain adaption strategy was found to be significantly effective to alleviate the mismatch on the anonymized speaker vectors. Audio samples and source code are available online.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.