Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Mar 2022]
Title:Unsupervised Image Deraining: Optimization Model Driven Deep CNN
View PDFAbstract:The deep convolutional neural network has achieved significant progress for single image rain streak removal. However, most of the data-driven learning methods are full-supervised or semi-supervised, unexpectedly suffering from significant performance drops when dealing with real rain. These data-driven learning methods are representative yet generalize poor for real rain. The opposite holds true for the model-driven unsupervised optimization methods. To overcome these problems, we propose a unified unsupervised learning framework which inherits the generalization and representation merits for real rain removal. Specifically, we first discover a simple yet important domain knowledge that directional rain streak is anisotropic while the natural clean image is isotropic, and formulate the structural discrepancy into the energy function of the optimization model. Consequently, we design an optimization model-driven deep CNN in which the unsupervised loss function of the optimization model is enforced on the proposed network for better generalization. In addition, the architecture of the network mimics the main role of the optimization models with better feature representation. On one hand, we take advantage of the deep network to improve the representation. On the other hand, we utilize the unsupervised loss of the optimization model for better generalization. Overall, the unsupervised learning framework achieves good generalization and representation: unsupervised training (loss) with only a few real rainy images (input) and physical meaning network (architecture). Extensive experiments on synthetic and real-world rain datasets show the superiority of the proposed method.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.