Computer Science > Machine Learning
[Submitted on 16 Mar 2022]
Title:Meta-Learning of NAS for Few-shot Learning in Medical Image Applications
View PDFAbstract:Deep learning methods have been successful in solving tasks in machine learning and have made breakthroughs in many sectors owing to their ability to automatically extract features from unstructured data. However, their performance relies on manual trial-and-error processes for selecting an appropriate network architecture, hyperparameters for training, and pre-/post-procedures. Even though it has been shown that network architecture plays a critical role in learning feature representation feature from data and the final performance, searching for the best network architecture is computationally intensive and heavily relies on researchers' experience. Automated machine learning (AutoML) and its advanced techniques i.e. Neural Architecture Search (NAS) have been promoted to address those limitations. Not only in general computer vision tasks, but NAS has also motivated various applications in multiple areas including medical imaging. In medical imaging, NAS has significant progress in improving the accuracy of image classification, segmentation, reconstruction, and more. However, NAS requires the availability of large annotated data, considerable computation resources, and pre-defined tasks. To address such limitations, meta-learning has been adopted in the scenarios of few-shot learning and multiple tasks. In this book chapter, we first present a brief review of NAS by discussing well-known approaches in search space, search strategy, and evaluation strategy. We then introduce various NAS approaches in medical imaging with different applications such as classification, segmentation, detection, reconstruction, etc. Meta-learning in NAS for few-shot learning and multiple tasks is then explained. Finally, we describe several open problems in NAS.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.