Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Mar 2022 (v1), last revised 25 Aug 2023 (this version, v3)]
Title:What's the Difference? The potential for Convolutional Neural Networks for transient detection without template subtraction
View PDFAbstract:We present a study of the potential for Convolutional Neural Networks (CNNs) to enable separation of astrophysical transients from image artifacts, a task known as "real-bogus" classification without requiring a template subtracted (or difference) image which requires a computationally expensive process to generate, involving image matching on small spatial scales in large volumes of data. Using data from the Dark Energy Survey, we explore the use of CNNs to (1) automate the "real-bogus" classification, (2) reduce the computational costs of transient discovery. We compare the efficiency of two CNNs with similar architectures, one that uses "image triplets" (templates, search, and difference image) and one that takes as input the template and search only. We measure the decrease in efficiency associated with the loss of information in input finding that the testing accuracy is reduced from 96% to 91.1%. We further investigate how the latter model learns the required information from the template and search by exploring the saliency maps. Our work (1) confirms that CNNs are excellent models for "real-bogus" classification that rely exclusively on the imaging data and require no feature engineering task; (2) demonstrates that high-accuracy (> 90%) models can be built without the need to construct difference images, but some accuracy is lost. Since once trained, neural networks can generate predictions at minimal computational costs, we argue that future implementations of this methodology could dramatically reduce the computational costs in the detection of transients in synoptic surveys like Rubin Observatory's Legacy Survey of Space and Time by bypassing the Difference Image Analysis entirely.
Submission history
From: Tatiana Acero Cuellar [view email][v1] Mon, 14 Mar 2022 18:00:03 UTC (2,299 KB)
[v2] Fri, 2 Jun 2023 18:34:44 UTC (2,977 KB)
[v3] Fri, 25 Aug 2023 14:56:40 UTC (3,068 KB)
Current browse context:
cs.CV
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.