Computer Science > Computational Engineering, Finance, and Science
[Submitted on 14 Mar 2022 (v1), last revised 20 Oct 2022 (this version, v2)]
Title:Bayesian-EUCLID: discovering hyperelastic material laws with uncertainties
View PDFAbstract:Within the scope of our recent approach for Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID), we propose an unsupervised Bayesian learning framework for discovery of parsimonious and interpretable constitutive laws with quantifiable uncertainties. As in deterministic EUCLID, we do not resort to stress data, but only to realistically measurable full-field displacement and global reaction force data; as opposed to calibration of an a priori assumed model, we start with a constitutive model ansatz based on a large catalog of candidate functional features; we leverage domain knowledge by including features based on existing, both physics-based and phenomenological, constitutive models. In the new Bayesian-EUCLID approach, we use a hierarchical Bayesian model with sparsity-promoting priors and Monte Carlo sampling to efficiently solve the parsimonious model selection task and discover physically consistent constitutive equations in the form of multivariate multi-modal probabilistic distributions. We demonstrate the ability to accurately and efficiently recover isotropic and anisotropic hyperelastic models like the Neo-Hookean, Isihara, Gent-Thomas, Arruda-Boyce, Ogden, and Holzapfel models in both elastostatics and elastodynamics. The discovered constitutive models are reliable under both epistemic uncertainties - i.e. uncertainties on the true features of the constitutive catalog - and aleatoric uncertainties - which arise from the noise in the displacement field data, and are automatically estimated by the hierarchical Bayesian model.
Submission history
From: Siddhant Kumar [view email][v1] Mon, 14 Mar 2022 18:34:58 UTC (7,662 KB)
[v2] Thu, 20 Oct 2022 20:20:51 UTC (9,519 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.