Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Mar 2022 (v1), last revised 15 Mar 2022 (this version, v2)]
Title:XYLayoutLM: Towards Layout-Aware Multimodal Networks For Visually-Rich Document Understanding
View PDFAbstract:Recently, various multimodal networks for Visually-Rich Document Understanding(VRDU) have been proposed, showing the promotion of transformers by integrating visual and layout information with the text embeddings. However, most existing approaches utilize the position embeddings to incorporate the sequence information, neglecting the noisy improper reading order obtained by OCR tools. In this paper, we propose a robust layout-aware multimodal network named XYLayoutLM to capture and leverage rich layout information from proper reading orders produced by our Augmented XY Cut. Moreover, a Dilated Conditional Position Encoding module is proposed to deal with the input sequence of variable lengths, and it additionally extracts local layout information from both textual and visual modalities while generating position embeddings. Experiment results show that our XYLayoutLM achieves competitive results on document understanding tasks.
Submission history
From: Zhangxuan Gu [view email][v1] Mon, 14 Mar 2022 09:19:12 UTC (8,276 KB)
[v2] Tue, 15 Mar 2022 14:51:16 UTC (8,276 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.