Computer Science > Machine Learning
[Submitted on 8 Mar 2022]
Title:On generative models as the basis for digital twins
View PDFAbstract:A framework is proposed for generative models as a basis for digital twins or mirrors of structures. The proposal is based on the premise that deterministic models cannot account for the uncertainty present in most structural modelling applications. Two different types of generative models are considered here. The first is a physics-based model based on the stochastic finite element (SFE) method, which is widely used when modelling structures that have material and loading uncertainties imposed. Such models can be calibrated according to data from the structure and would be expected to outperform any other model if the modelling accurately captures the true underlying physics of the structure. The potential use of SFE models as digital mirrors is illustrated via application to a linear structure with stochastic material properties. For situations where the physical formulation of such models does not suffice, a data-driven framework is proposed, using machine learning and conditional generative adversarial networks (cGANs). The latter algorithm is used to learn the distribution of the quantity of interest in a structure with material nonlinearities and uncertainties. For the examples considered in this work, the data-driven cGANs model outperform the physics-based approach. Finally, an example is shown where the two methods are coupled such that a hybrid model approach is demonstrated.
Submission history
From: Georgios Tsialiamanis [view email][v1] Tue, 8 Mar 2022 20:34:56 UTC (361 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.