Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Mar 2022 (v1), last revised 17 Dec 2022 (this version, v4)]
Title:Skating-Mixer: Long-Term Sport Audio-Visual Modeling with MLPs
View PDFAbstract:Figure skating scoring is challenging because it requires judging the technical moves of the players as well as their coordination with the background music. Most learning-based methods cannot solve it well for two reasons: 1) each move in figure skating changes quickly, hence simply applying traditional frame sampling will lose a lot of valuable information, especially in 3 to 5 minutes long videos; 2) prior methods rarely considered the critical audio-visual relationship in their models. Due to these reasons, we introduce a novel architecture, named Skating-Mixer. It extends the MLP framework into a multimodal fashion and effectively learns long-term representations through our designed memory recurrent unit (MRU). Aside from the model, we collected a high-quality audio-visual FS1000 dataset, which contains over 1000 videos on 8 types of programs with 7 different rating metrics, overtaking other datasets in both quantity and diversity. Experiments show the proposed method achieves SOTAs over all major metrics on the public Fis-V and our FS1000 dataset. In addition, we include an analysis applying our method to the recent competitions in Beijing 2022 Winter Olympic Games, proving our method has strong applicability.
Submission history
From: Jingfei Xia [view email][v1] Tue, 8 Mar 2022 10:36:55 UTC (2,596 KB)
[v2] Tue, 22 Mar 2022 16:30:14 UTC (2,601 KB)
[v3] Sun, 19 Jun 2022 04:01:49 UTC (2,602 KB)
[v4] Sat, 17 Dec 2022 06:50:32 UTC (39,296 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.