Computer Science > Machine Learning
[Submitted on 1 Mar 2022]
Title:Automatic Depression Detection via Learning and Fusing Features from Visual Cues
View PDFAbstract:Depression is one of the most prevalent mental disorders, which seriously affects one's life. Traditional depression diagnostics commonly depends on rating with scales, which can be labor-intensive and subjective. In this context, Automatic Depression Detection (ADD) has been attracting more attention for its low cost and objectivity. ADD systems are able to detect depression automatically from some medical records, like video sequences. However, it remains challenging to effectively extract depression-specific information from long sequences, thereby hindering a satisfying accuracy. In this paper, we propose a novel ADD method via learning and fusing features from visual cues. Specifically, we firstly construct Temporal Dilated Convolutional Network (TDCN), in which multiple Dilated Convolution Blocks (DCB) are designed and stacked, to learn the long-range temporal information from sequences. Then, the Feature-Wise Attention (FWA) module is adopted to fuse different features extracted from TDCNs. The module learns to assign weights for the feature channels, aiming to better incorporate different kinds of visual features and further enhance the detection accuracy. Our method achieves the state-of-the-art performance on the DAIC_WOZ dataset compared to other visual-feature-based methods, showing its effectiveness.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.