Computer Science > Computation and Language
[Submitted on 1 Mar 2022]
Title:RMBR: A Regularized Minimum Bayes Risk Reranking Framework for Machine Translation
View PDFAbstract:Beam search is the most widely used decoding method for neural machine translation (NMT). In practice, the top-1 candidate with the highest log-probability among the n candidates is selected as the preferred one. However, this top-1 candidate may not be the best overall translation among the n-best list. Recently, Minimum Bayes Risk (MBR) decoding has been proposed to improve the quality for NMT, which seeks for a consensus translation that is closest on average to other candidates from the n-best list. We argue that MBR still suffers from the following problems: The utility function only considers the lexical-level similarity between candidates; The expected utility considers the entire n-best list which is time-consuming and inadequate candidates in the tail list may hurt the performance; Only the relationship between candidates is considered. To solve these issues, we design a regularized MBR reranking framework (RMBR), which considers semantic-based similarity and computes the expected utility for each candidate by truncating the list. We expect the proposed framework to further consider the translation quality and model uncertainty of each candidate. Thus the proposed quality regularizer and uncertainty regularizer are incorporated into the framework. Extensive experiments on multiple translation tasks demonstrate the effectiveness of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.