Computer Science > Machine Learning
[Submitted on 2 Mar 2022 (v1), last revised 11 Jan 2023 (this version, v3)]
Title:Adaptive Discriminative Regularization for Visual Classification
View PDFAbstract:How to improve discriminative feature learning is central in classification. Existing works address this problem by explicitly increasing inter-class separability and intra-class similarity, whether by constructing positive and negative pairs for contrastive learning or posing tighter class separating margins. These methods do not exploit the similarity between different classes as they adhere to i.i.d. assumption in data. In this paper, we embrace the real-world data distribution setting that some classes share semantic overlaps due to their similar appearances or concepts. Regarding this hypothesis, we propose a novel regularization to improve discriminative learning. We first calibrate the estimated highest likelihood of one sample based on its semantically neighboring classes, then encourage the overall likelihood predictions to be deterministic by imposing an adaptive exponential penalty. As the gradient of the proposed method is roughly proportional to the uncertainty of the predicted likelihoods, we name it adaptive discriminative regularization (ADR), trained along with a standard cross entropy loss in classification. Extensive experiments demonstrate that it can yield consistent and non-trivial performance improvements in a variety of visual classification tasks (over 10 benchmarks). Furthermore, we find it is robust to long-tailed and noisy label data distribution. Its flexible design enables its compatibility with mainstream classification architectures and losses.
Submission history
From: Tsingsong Zhao [view email][v1] Wed, 2 Mar 2022 02:52:23 UTC (1,342 KB)
[v2] Tue, 3 Jan 2023 09:53:02 UTC (1,217 KB)
[v3] Wed, 11 Jan 2023 14:06:36 UTC (1,118 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.