Computer Science > Social and Information Networks
[Submitted on 26 Feb 2022]
Title:A New BAT and PageRank algorithm for Propagation Probability in Social Networks
View PDFAbstract:Social networks have increasingly become important and popular in modern times. Moreover, the influence of social networks plays a vital role in various organizations including government organizations, academic research or corporate organizations. Therefore, how to strategize the optimal propagation strategy in social networks has also become more important. By increasing the precision of evaluating the propagation probability of social network, it can indirectly influence the investment of cost, manpower and time for information propagation to achieve the best return. This study proposes a new algorithm, which includes a scale-free network, Barabasi-Albert model, Binary-Addition-Tree (BAT) algorithm, PageRank algorithm, personalized PageRank algorithm and a new BAT algorithm, to calculate the propagation probability in social networks. The results obtained after implementing the simulation experiment of social network models show the studied model and the proposed algorithm provide an effective method to increase the efficiency of information propagation in social networks. In this way, the maximum propagation efficiency is achieved with the minimum investment.
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.