Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Jul 2021]
Title:Semantic-guided Pixel Sampling for Cloth-Changing Person Re-identification
View PDFAbstract:Cloth-changing person re-identification (re-ID) is a new rising research topic that aims at retrieving pedestrians whose clothes are changed. This task is quite challenging and has not been fully studied to date. Current works mainly focus on body shape or contour sketch, but they are not robust enough due to view and posture variations. The key to this task is to exploit cloth-irrelevant cues. This paper proposes a semantic-guided pixel sampling approach for the cloth-changing person re-ID task. We do not explicitly define which feature to extract but force the model to automatically learn cloth-irrelevant cues. Specifically, we first recognize the pedestrian's upper clothes and pants, then randomly change them by sampling pixels from other pedestrians. The changed samples retain the identity labels but exchange the pixels of clothes or pants among different pedestrians. Besides, we adopt a loss function to constrain the learned features to keep consistent before and after changes. In this way, the model is forced to learn cues that are irrelevant to upper clothes and pants. We conduct extensive experiments on the latest released PRCC dataset. Our method achieved 65.8% on Rank1 accuracy, which outperforms previous methods with a large margin. The code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.