Computer Science > Social and Information Networks
[Submitted on 27 Oct 2020]
Title:It's all in the (Sub-)title? Expanding Signal Evaluation in Crowdfunding Research
View PDFAbstract:Research on crowdfunding success that incorporates CATA (computer-aided text analysis) is quickly advancing to the big leagues (e.g., Parhankangas and Renko, 2017; Anglin et al., 2018; Moss et al., 2018) and is often theoretically based on information asymmetry, social capital, signaling or a combination thereof. Yet, current papers that explore crowdfunding success criteria fail to take advantage of the full breadth of signals available and only very few such papers examine technology projects. In this paper, we compare and contrast the strength of the entrepreneur's textual success signals to project backers within this category. Based on a random sample of 1,049 technology projects collected from Kickstarter, we evaluate textual information not only from project titles and descriptions but also from video subtitles. We find that incorporating subtitle information increases the variance explained by the respective models and therefore their predictive capability for funding success. By expanding the information landscape, our work advances the field and paves the way for more fine-grained studies of success signals in crowdfunding and therefore for an improved understanding of investor decision-making in the crowd.
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.