Computer Science > Data Structures and Algorithms
[Submitted on 6 Feb 2020 (v1), last revised 2 Mar 2020 (this version, v2)]
Title:Fair Correlation Clustering
View PDFAbstract:In this paper, we study correlation clustering under fairness constraints. Fair variants of $k$-median and $k$-center clustering have been studied recently, and approximation algorithms using a notion called fairlet decomposition have been proposed. We obtain approximation algorithms for fair correlation clustering under several important types of fairness constraints.
Our results hinge on obtaining a fairlet decomposition for correlation clustering by introducing a novel combinatorial optimization problem. We define a fairlet decomposition with cost similar to the $k$-median cost and this allows us to obtain approximation algorithms for a wide range of fairness constraints.
We complement our theoretical results with an in-depth analysis of our algorithms on real graphs where we show that fair solutions to correlation clustering can be obtained with limited increase in cost compared to the state-of-the-art (unfair) algorithms.
Submission history
From: Sara Ahmadian [view email][v1] Thu, 6 Feb 2020 14:28:21 UTC (42 KB)
[v2] Mon, 2 Mar 2020 22:27:51 UTC (62 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.