Computer Science > Information Retrieval
[Submitted on 21 Sep 2024]
Title:The trade-off between data minimization and fairness in collaborative filtering
View PDF HTML (experimental)Abstract:General Data Protection Regulations (GDPR) aim to safeguard individuals' personal information from harm. While full compliance is mandatory in the European Union and the California Privacy Rights Act (CPRA), it is not in other places. GDPR requires simultaneous compliance with all the principles such as fairness, accuracy, and data minimization. However, it overlooks the potential contradictions within its principles. This matter gets even more complex when compliance is required from decision-making systems. Therefore, it is essential to investigate the feasibility of simultaneously achieving the goals of GDPR and machine learning, and the potential tradeoffs that might be forced upon us. This paper studies the relationship between the principles of data minimization and fairness in recommender systems. We operationalize data minimization via active learning (AL) because, unlike many other methods, it can preserve a high accuracy while allowing for strategic data collection, hence minimizing the amount of data collection. We have implemented several active learning strategies (personalized and non-personalized) and conducted a comparative analysis focusing on accuracy and fairness on two publicly available datasets. The results demonstrate that different AL strategies may have different impacts on the accuracy of recommender systems with nearly all strategies negatively impacting fairness. There has been no to very limited work on the trade-off between data minimization and fairness, the pros and cons of active learning methods as tools for implementing data minimization, and the potential impacts of AL on fairness. By exploring these critical aspects, we offer valuable insights for developing recommender systems that are GDPR compliant.
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.