Computer Science > Emerging Technologies
[Submitted on 7 Oct 2024]
Title:OmniBuds: A Sensory Earable Platform for Advanced Bio-Sensing and On-Device Machine Learning
View PDF HTML (experimental)Abstract:Sensory earables have evolved from basic audio enhancement devices into sophisticated platforms for clinical-grade health monitoring and wellbeing management. This paper introduces OmniBuds, an advanced sensory earable platform integrating multiple biosensors and onboard computation powered by a machine learning accelerator, all within a real-time operating system (RTOS). The platform's dual-ear symmetric design, equipped with precisely positioned kinetic, acoustic, optical, and thermal sensors, enables highly accurate and real-time physiological assessments. Unlike conventional earables that rely on external data processing, OmniBuds leverage real-time onboard computation to significantly enhance system efficiency, reduce latency, and safeguard privacy by processing data locally. This capability includes executing complex machine learning models directly on the device. We provide a comprehensive analysis of OmniBuds' design, hardware and software architecture demonstrating its capacity for multi-functional applications, accurate and robust tracking of physiological parameters, and advanced human-computer interaction.
Submission history
From: Alessandro Montanari [view email][v1] Mon, 7 Oct 2024 06:30:59 UTC (7,267 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.