Computer Science > Machine Learning
[Submitted on 5 Sep 2024]
Title:Reducing Bias in Deep Learning Optimization: The RSGDM Approach
View PDFAbstract:Currently, widely used first-order deep learning optimizers include non-adaptive learning rate optimizers and adaptive learning rate optimizers. The former is represented by SGDM (Stochastic Gradient Descent with Momentum), while the latter is represented by Adam. Both of these methods use exponential moving averages to estimate the overall gradient. However, estimating the overall gradient using exponential moving averages is biased and has a lag. This paper proposes an RSGDM algorithm based on differential correction. Our contributions are mainly threefold: 1) Analyze the bias and lag brought by the exponential moving average in the SGDM algorithm. 2) Use the differential estimation term to correct the bias and lag in the SGDM algorithm, proposing the RSGDM algorithm. 3) Experiments on the CIFAR datasets have proven that our RSGDM algorithm is superior to the SGDM algorithm in terms of convergence accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.