Computer Science > Robotics
[Submitted on 23 Sep 2024]
Title:MEVIUS: A Quadruped Robot Easily Constructed through E-Commerce with Sheet Metal Welding and Machining
View PDF HTML (experimental)Abstract:Quadruped robots that individual researchers can build by themselves are crucial for expanding the scope of research due to their high scalability and customizability. These robots must be easily ordered and assembled through e-commerce or DIY methods, have a low number of components for easy maintenance, and possess durability to withstand experiments in diverse environments. Various quadruped robots have been developed so far, but most robots that can be built by research institutions are relatively small and made of plastic using 3D printers. These robots cannot withstand experiments in external environments such as mountain trails or rubble, and they will easily break with intense movements. Although there is the advantage of being able to print parts by yourself, the large number of components makes replacing broken parts and maintenance very cumbersome. Therefore, in this study, we develop a metal quadruped robot MEVIUS, that can be constructed and assembled using only materials ordered through e-commerce. We have considered the minimum set of components required for a quadruped robot, employing metal machining, sheet metal welding, and off-the-shelf components only. Also, we have achieved a simple circuit and software configuration. Considering the communication delay due to its simple configuration, we experimentally demonstrate that MEVIUS, utilizing reinforcement learning and Sim2Real, can traverse diverse rough terrains and withstand outside experiments. All hardware and software components can be obtained from this https URL.
Submission history
From: Kento Kawaharazuka [view email][v1] Mon, 23 Sep 2024 05:35:03 UTC (5,847 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.