Computer Science > Machine Learning
[Submitted on 18 Sep 2024 (v1), last revised 25 Oct 2024 (this version, v2)]
Title:A constrained optimization approach to improve robustness of neural networks
View PDF HTML (experimental)Abstract:In this paper, we present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining high accuracy on clean data. Our method introduces adversary-correction constraints to ensure correct classification of adversarial data and minimizes changes to the model parameters. We propose an efficient cutting-plane-based algorithm to iteratively solve the large-scale nonconvex optimization problem by approximating the feasible region through polyhedral cuts and balancing between robustness and accuracy. Computational experiments on standard datasets such as MNIST and CIFAR10 demonstrate that the proposed approach significantly improves robustness, even with a very small set of adversarial data, while maintaining minimal impact on accuracy.
Submission history
From: Shudian Zhao [view email][v1] Wed, 18 Sep 2024 18:37:14 UTC (71 KB)
[v2] Fri, 25 Oct 2024 13:01:18 UTC (125 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.