Computer Science > Information Theory
[Submitted on 19 Sep 2024]
Title:On the Regret of Coded Caching with Adversarial Requests
View PDF HTML (experimental)Abstract:We study the well-known coded caching problem in an online learning framework, wherein requests arrive sequentially, and an online policy can update the cache contents based on the history of requests seen thus far. We introduce a caching policy based on the Follow-The-Perturbed-Leader principle and show that for any time horizon T and any request sequence, it achieves a sub-linear regret of \mathcal{O}(\sqrt(T) ) with respect to an oracle that knows the request sequence beforehand. Our study marks the first examination of adversarial regret in the coded caching setup. Furthermore, we also address the issue of switching cost by establishing an upper bound on the expected number of cache updates made by our algorithm under unrestricted switching and also provide an upper bound on the regret under restricted switching when cache updates can only happen in a pre-specified subset of timeslots. Finally, we validate our theoretical insights with numerical results using a real-world dataset
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.