Mathematics > Optimization and Control
[Submitted on 19 Sep 2024]
Title:Stochastic Prediction Equilibrium for Dynamic Traffic Assignment
View PDF HTML (experimental)Abstract:Stochastic effects significantly influence the dynamics of traffic flows. Many dynamic traffic assignment (DTA) models attempt to capture these effects by prescribing a specific ratio that determines how flow splits across different routes based on the routes' costs. In this paper, we propose a new framework for DTA that incorporates the interplay between the routing decisions of each single traffic participant, the stochastic nature of predicting the future state of the network, and the physical flow dynamics. Our framework consists of an edge loading operator modeling the physical flow propagation and a routing operator modeling the routing behavior of traffic participants. The routing operator is assumed to be set-valued and capable to model complex (deterministic) equilibrium conditions as well as stochastic equilibrium conditions assuming that measurements for predicting traffic are noisy. As our main results, we derive several quite general equilibrium existence and uniqueness results which not only subsume known results from the literature but also lead to new results. Specifically, for the new stochastic prediction equilibrium, we show existence and uniqueness under natural assumptions on the probability distribution over the predictions.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.