Computer Science > Emerging Technologies
[Submitted on 17 Sep 2024 (v1), last revised 2 Dec 2024 (this version, v2)]
Title:Overcoming Ambient Drift and Negative-Bias Temperature Instability in Foundry Carbon Nanotube Transistors
View PDFAbstract:Back-end-of-line (BEOL) logic integration is emerging as a complementary scaling path to supplement front-end-of-line (FEOL) Silicon. Among various options for BEOL logic, Carbon Nanotube Field-Effect Transistors (CNFETs) have been integrated within commercial silicon foundries, and complex CNFET circuits (e.g., RISC-V core, SRAM arrays) have been demonstrated. However, there lacks comprehensive studies that analyze the ambient drift (i.e., air-stability) and reliability of CNFETs. Here, for the first time, we thoroughly characterize and demonstrate how to overcome ambient drift and negative bias temperature instability (NBTI) in CNFETs using the following techniques: (1) Silicon Nitride encapsulation to limit ambient atmosphere induced threshold voltage shift (~8x reduction of median VT shift over 90 days) and (2) AC/pulsed operation to significantly improve CNFET NBTI vs. DC operation across a wide frequency range (e.g., 20% duty cycle AC operation at 10 MHz could extend CNFET NBTI time-to-failure by >10000x vs. DC for a target VT shift tolerance < 100 mV with gate stress bias VGS,stress = -1.2 V at 125 C).
Submission history
From: Tathagata Srimani [view email][v1] Tue, 17 Sep 2024 15:51:16 UTC (816 KB)
[v2] Mon, 2 Dec 2024 02:13:06 UTC (1,965 KB)
Current browse context:
cs.ET
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.