Computer Science > Cryptography and Security
[Submitted on 18 Sep 2024]
Title:Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction
View PDF HTML (experimental)Abstract:In the era of rapid Internet development, log data has become indispensable for recording the operations of computer devices and software. These data provide valuable insights into system behavior and necessitate thorough analysis. Recent advances in text analysis have enabled deep learning to achieve significant breakthroughs in log anomaly detection. However, the high cost of manual annotation and the dynamic nature of usage scenarios present major challenges to effective log analysis. This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios. It leverages the expressive power of large models for log content analysis and the capability of graph structures to encapsulate correlations between logs. It retains key log information while integrating the causal relationships between logs to achieve effective feature extraction. Additionally, we introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor. By employing graph clustering algorithms for log anomaly detection, Log2graphs enables the identification of abnormal logs without the need for labeled data. We comprehensively evaluate the feature extraction capability of DualGCN-LogAE and the anomaly detection performance of Log2graphs using public log datasets across five different scenarios. Our evaluation metrics include detection accuracy and graph clustering quality scores. Experimental results demonstrate that the log features extracted by DualGCN-LogAE outperform those obtained by other methods on classic classifiers. Moreover, Log2graphs surpasses existing unsupervised log detection methods, providing a robust tool for advancing log anomaly detection research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.