Computer Science > Databases
[Submitted on 16 Sep 2024]
Title:Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code!
View PDF HTML (experimental)Abstract:Machine learning (ML) applications that learn from data are increasingly used to automate impactful decisions. Unfortunately, these applications often fall short of adequately managing critical data and complying with upcoming regulations. A technical reason for the persistence of these issues is that the data pipelines in common ML libraries and cloud services lack fundamental declarative, data-centric abstractions. Recent research has shown how such abstractions enable techniques like provenance tracking and automatic inspection to help manage ML pipelines. Unfortunately, these approaches lack adoption in the real world because they require clean ML pipeline code written with declarative APIs, instead of the messy imperative Python code that data scientists typically write for data preparation.
We argue that it is unrealistic to expect data scientists to change their established development practices. Instead, we propose to circumvent this "code abstraction gap" by leveraging the code generation capabilities of large language models (LLMs). Our idea is to rewrite messy data science code to a custom-tailored declarative pipeline abstraction, which we implement as a proof-of-concept in our prototype Lester. We detail its application for a challenging compliance management example involving "incremental view maintenance" of deployed ML pipelines. The code rewrites for our running example show the potential of LLMs to make messy data science code declarative, e.g., by identifying hand-coded joins in Python and turning them into joins on dataframes, or by generating declarative feature encoders from NumPy code.
Submission history
From: Sebastian Schelter [view email][v1] Mon, 16 Sep 2024 08:37:43 UTC (1,918 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.