Computer Science > Cryptography and Security
[Submitted on 1 Sep 2024]
Title:NoPhish: Efficient Chrome Extension for Phishing Detection Using Machine Learning Techniques
View PDF HTML (experimental)Abstract:The growth of digitalization services via web browsers has simplified our daily routine of doing business. But at the same time, it has made the web browser very attractive for several cyber-attacks. Web phishing is a well-known cyberattack that is used by attackers camouflaging as trustworthy web servers to obtain sensitive user information such as credit card numbers, bank information, personal ID, social security number, and username and passwords. In recent years many techniques have been developed to identify the authentic web pages that users visit and warn them when the webpage is phishing. In this paper, we have developed an extension for Chrome the most favorite web browser, that will serve as a middleware between the user and phishing websites. The Chrome extension named "NoPhish" shall identify a phishing webpage based on several Machine Learning techniques. We have used the training dataset from "PhishTank" and extracted the 22 most popular features as rated by the Alexa database. The training algorithms used are Random Forest, Support Vector Machine, and k-Nearest Neighbor. The performance results show that Random Forest delivers the best precision.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.