Computer Science > Cryptography and Security
[Submitted on 15 Sep 2024]
Title:Federated Learning in Adversarial Environments: Testbed Design and Poisoning Resilience in Cybersecurity
View PDF HTML (experimental)Abstract:This paper presents the design and implementation of a Federated Learning (FL) testbed, focusing on its application in cybersecurity and evaluating its resilience against poisoning attacks. Federated Learning allows multiple clients to collaboratively train a global model while keeping their data decentralized, addressing critical needs for data privacy and security, particularly in sensitive fields like cybersecurity. Our testbed, built using the Flower framework, facilitates experimentation with various FL frameworks, assessing their performance, scalability, and ease of integration. Through a case study on federated intrusion detection systems, we demonstrate the testbed's capabilities in detecting anomalies and securing critical infrastructure without exposing sensitive network data. Comprehensive poisoning tests, targeting both model and data integrity, evaluate the system's robustness under adversarial conditions. Our results show that while federated learning enhances data privacy and distributed learning, it remains vulnerable to poisoning attacks, which must be mitigated to ensure its reliability in real-world applications.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.