Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 15 Sep 2024]
Title:Stutter-Solver: End-to-end Multi-lingual Dysfluency Detection
View PDF HTML (experimental)Abstract:Current de-facto dysfluency modeling methods utilize template matching algorithms which are not generalizable to out-of-domain real-world dysfluencies across languages, and are not scalable with increasing amounts of training data. To handle these problems, we propose Stutter-Solver: an end-to-end framework that detects dysfluency with accurate type and time transcription, inspired by the YOLO object detection algorithm. Stutter-Solver can handle co-dysfluencies and is a natural multi-lingual dysfluency detector. To leverage scalability and boost performance, we also introduce three novel dysfluency corpora: VCTK-Pro, VCTK-Art, and AISHELL3-Pro, simulating natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation through articulatory-encodec and TTS-based methods. Our approach achieves state-of-the-art performance on all available dysfluency corpora. Code and datasets are open-sourced at this https URL
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.