Computer Science > Machine Learning
[Submitted on 13 Sep 2024]
Title:Quasimetric Value Functions with Dense Rewards
View PDF HTML (experimental)Abstract:As a generalization of reinforcement learning (RL) to parametrizable goals, goal conditioned RL (GCRL) has a broad range of applications, particularly in challenging tasks in robotics. Recent work has established that the optimal value function of GCRL $Q^\ast(s,a,g)$ has a quasimetric structure, leading to targetted neural architectures that respect such structure. However, the relevant analyses assume a sparse reward setting -- a known aggravating factor to sample complexity. We show that the key property underpinning a quasimetric, viz., the triangle inequality, is preserved under a dense reward setting as well. Contrary to earlier findings where dense rewards were shown to be detrimental to GCRL, we identify the key condition necessary for triangle inequality. Dense reward functions that satisfy this condition can only improve, never worsen, sample complexity. This opens up opportunities to train efficient neural architectures with dense rewards, compounding their benefits to sample complexity. We evaluate this proposal in 12 standard benchmark environments in GCRL featuring challenging continuous control tasks. Our empirical results confirm that training a quasimetric value function in our dense reward setting indeed outperforms training with sparse rewards.
Submission history
From: Khadichabonu Valieva [view email][v1] Fri, 13 Sep 2024 11:26:05 UTC (1,323 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.