Computer Science > Social and Information Networks
[Submitted on 12 Sep 2024]
Title:Virtual Node Generation for Node Classification in Sparsely-Labeled Graphs
View PDF HTML (experimental)Abstract:In the broader machine learning literature, data-generation methods demonstrate promising results by generating additional informative training examples via augmenting sparse labels. Such methods are less studied in graphs due to the intricate dependencies among nodes in complex topology structures. This paper presents a novel node generation method that infuses a small set of high-quality synthesized nodes into the graph as additional labeled nodes to optimally expand the propagation of labeled information. By simply infusing additional nodes, the framework is orthogonal to the graph learning and downstream classification techniques, and thus is compatible with most popular graph pre-training (self-supervised learning), semi-supervised learning, and meta-learning methods. The contribution lies in designing the generated node set by solving a novel optimization problem. The optimization places the generated nodes in a manner that: (1) minimizes the classification loss to guarantee training accuracy and (2) maximizes label propagation to low-confidence nodes in the downstream task to ensure high-quality propagation. Theoretically, we show that the above dual optimization maximizes the global confidence of node classification. Our Experiments demonstrate statistically significant performance improvements over 14 baselines on 10 publicly available datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.