Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Sep 2024]
Title:Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment
View PDF HTML (experimental)Abstract:Robust frame-wise embeddings are essential to perform video analysis and understanding tasks. We present a self-supervised method for representation learning based on aligning temporal video sequences. Our framework uses a transformer-based encoder to extract frame-level features and leverages them to find the optimal alignment path between video sequences. We introduce the novel Local-Alignment Contrastive (LAC) loss, which combines a differentiable local alignment loss to capture local temporal dependencies with a contrastive loss to enhance discriminative learning. Prior works on video alignment have focused on using global temporal ordering across sequence pairs, whereas our loss encourages identifying the best-scoring subsequence alignment. LAC uses the differentiable Smith-Waterman (SW) affine method, which features a flexible parameterization learned through the training phase, enabling the model to adjust the temporal gap penalty length dynamically. Evaluations show that our learned representations outperform existing state-of-the-art approaches on action recognition tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.