Computer Science > Robotics
[Submitted on 4 Sep 2024 (v1), last revised 5 Oct 2024 (this version, v2)]
Title:Causality-Aware Transformer Networks for Robotic Navigation
View PDF HTML (experimental)Abstract:Current research in Visual Navigation reveals opportunities for improvement. First, the direct adoption of RNNs and Transformers often overlooks the specific differences between Embodied AI and traditional sequential data modelling, potentially limiting its performance in Embodied AI tasks. Second, the reliance on task-specific configurations, such as pre-trained modules and dataset-specific logic, compromises the generalizability of these methods. We address these constraints by initially exploring the unique differences between Navigation tasks and other sequential data tasks through the lens of Causality, presenting a causal framework to elucidate the inadequacies of conventional sequential methods for Navigation. By leveraging this causal perspective, we propose Causality-Aware Transformer (CAT) Networks for Navigation, featuring a Causal Understanding Module to enhance the models's Environmental Understanding capability. Meanwhile, our method is devoid of task-specific inductive biases and can be trained in an End-to-End manner, which enhances the method's generalizability across various contexts. Empirical evaluations demonstrate that our methodology consistently surpasses benchmark performances across a spectrum of settings, tasks and simulation environments. Extensive ablation studies reveal that the performance gains can be attributed to the Causal Understanding Module, which demonstrates effectiveness and efficiency in both Reinforcement Learning and Supervised Learning settings.
Submission history
From: Ruoyu Wang [view email][v1] Wed, 4 Sep 2024 12:53:26 UTC (3,414 KB)
[v2] Sat, 5 Oct 2024 11:34:38 UTC (1,627 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.