Computer Science > Sound
[Submitted on 27 Aug 2024]
Title:Leveraging Self-supervised Audio Representations for Data-Efficient Acoustic Scene Classification
View PDF HTML (experimental)Abstract:Acoustic scene classification (ASC) predominantly relies on supervised approaches. However, acquiring labeled data for training ASC models is often costly and time-consuming. Recently, self-supervised learning (SSL) has emerged as a powerful method for extracting features from unlabeled audio data, benefiting many downstream audio tasks. This paper proposes a data-efficient and low-complexity ASC system by leveraging self-supervised audio representations extracted from general-purpose audio datasets. We introduce BEATs, an audio SSL pre-trained model, to extract the general representations from AudioSet. Through extensive experiments, it has been demonstrated that the self-supervised audio representations can help to achieve high ASC accuracy with limited labeled fine-tuning data. Furthermore, we find that ensembling the SSL models fine-tuned with different strategies contributes to a further performance improvement. To meet low-complexity requirements, we use knowledge distillation to transfer the self-supervised knowledge from large teacher models to an efficient student model. The experimental results suggest that the self-supervised teachers effectively improve the classification accuracy of the student model. Our best-performing system obtains an average accuracy of 56.7%.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.