Computer Science > Robotics
[Submitted on 27 Aug 2024]
Title:Points2Plans: From Point Clouds to Long-Horizon Plans with Composable Relational Dynamics
View PDF HTML (experimental)Abstract:We present Points2Plans, a framework for composable planning with a relational dynamics model that enables robots to solve long-horizon manipulation tasks from partial-view point clouds. Given a language instruction and a point cloud of the scene, our framework initiates a hierarchical planning procedure, whereby a language model generates a high-level plan and a sampling-based planner produces constraint-satisfying continuous parameters for manipulation primitives sequenced according to the high-level plan. Key to our approach is the use of a relational dynamics model as a unifying interface between the continuous and symbolic representations of states and actions, thus facilitating language-driven planning from high-dimensional perceptual input such as point clouds. Whereas previous relational dynamics models require training on datasets of multi-step manipulation scenarios that align with the intended test scenarios, Points2Plans uses only single-step simulated training data while generalizing zero-shot to a variable number of steps during real-world evaluations. We evaluate our approach on tasks involving geometric reasoning, multi-object interactions, and occluded object reasoning in both simulated and real-world settings. Results demonstrate that Points2Plans offers strong generalization to unseen long-horizon tasks in the real world, where it solves over 85% of evaluated tasks while the next best baseline solves only 50%. Qualitative demonstrations of our approach operating on a mobile manipulator platform are made available at this http URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.