Computer Science > Machine Learning
[Submitted on 23 Aug 2024]
Title:Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis
View PDF HTML (experimental)Abstract:Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention. Multivariate time series pose a complex challenge due to their feature and temporal dimensions. Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies. These methods focus narrowly on one dimension or engage in coarse-grained feature extraction, which can be inadequate for large datasets characterized by intricate relationships and dynamic changes. This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN. Our model analyzes both time and feature dimensions from a fine-grained perspective. First, we introduce a multi-scale temporal convolution module to extract detailed temporal features. Additionally, we present an augmented GAT to manage complex inter-feature dependencies, which incorporates graph topology into node features across multiple scales, a versatile, plug-and-play enhancement that significantly boosts the performance of GAT. Our experimental results confirm that our approach surpasses the baseline models on four datasets, demonstrating its potential for widespread application in fields requiring robust anomaly detection. The code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.