Computer Science > Software Engineering
[Submitted on 22 Aug 2024]
Title:Data Quality Antipatterns for Software Analytics
View PDF HTML (experimental)Abstract:Background: Data quality is vital in software analytics, particularly for machine learning (ML) applications like software defect prediction (SDP). Despite the widespread use of ML in software engineering, the effect of data quality antipatterns on these models remains underexplored.
Objective: This study develops a taxonomy of ML-specific data quality antipatterns and assesses their impact on software analytics models' performance and interpretation.
Methods: We identified eight types and 14 sub-types of ML-specific data quality antipatterns through a literature review. We conducted experiments to determine the prevalence of these antipatterns in SDP data (RQ1), assess how cleaning order affects model performance (RQ2), evaluate the impact of antipattern removal on performance (RQ3), and examine the consistency of interpretation from models built with different antipatterns (RQ4).
Results: In our SDP case study, we identified nine antipatterns. Over 90% of these overlapped at both row and column levels, complicating cleaning prioritization and risking excessive data removal. The order of cleaning significantly impacts ML model performance, with neural networks being more resilient to cleaning order changes than simpler models like logistic regression. Antipatterns such as Tailed Distributions and Class Overlap show a statistically significant correlation with performance metrics when other antipatterns are cleaned. Models built with different antipatterns showed moderate consistency in interpretation results.
Conclusion: The cleaning order of different antipatterns impacts ML model performance. Five antipatterns have a statistically significant correlation with model performance when others are cleaned. Additionally, model interpretation is moderately affected by different data quality antipatterns.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.