Computer Science > Machine Learning
[Submitted on 22 Aug 2024]
Title:Advanced atom-level representations for protein flexibility prediction utilizing graph neural networks
View PDF HTML (experimental)Abstract:Protein dynamics play a crucial role in many biological processes and drug interactions. However, measuring, and simulating protein dynamics is challenging and time-consuming. While machine learning holds promise in deciphering the determinants of protein dynamics from structural information, most existing methods for protein representation learning operate at the residue level, ignoring the finer details of atomic interactions. In this work, we propose for the first time to use graph neural networks (GNNs) to learn protein representations at the atomic level and predict B-factors from protein 3D structures. The B-factor reflects the atomic displacement of atoms in proteins, and can serve as a surrogate for protein flexibility. We compared different GNN architectures to assess their performance. The Meta-GNN model achieves a correlation coefficient of 0.71 on a large and diverse test set of over 4k proteins (17M atoms) from the Protein Data Bank (PDB), outperforming previous methods by a large margin. Our work demonstrates the potential of representations learned by GNNs for protein flexibility prediction and other related tasks.
Submission history
From: Maximilian Ebert [view email][v1] Thu, 22 Aug 2024 16:15:13 UTC (6,631 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.